Professionelle Umrüstung von Dieselbussen auf Elektroantrieb

e-troFit

Andreas Hager Netzwerkanlass its-ch, 22.05.2019

Wer wir sind

Lösungsanbieter für Digitalisierung in Mobilität und Industrie.

Automotive

Smart Mobility

Smart Factory

1600 Mitarbeiter

17 Standorte

8 Länder

Deutschland: München, Wolfsburg, Braunschweig, Leipzig, Stuttgart, Ingolstadt, Friedrichshafen

USA: Greenville (SC), Oxnard (CA), Woodcliff Lake (NJ)

Mexiko: San Luis Potosí **China:** Shenyang, Peking

Europa: Wien (Österreich), Nottingham (UK), Braşov (Rumänien),

Prag (Tschechien)

Zahlen und Fakten

Automotive Electronics

Kompletter Produktentwicklungsprozess, Systemintegration und intelligente Absicherungslösungen.

Smart Factory

Digitale Lösungen für die Industrie 4.0 in Maschinenbau und produzierenden Betrieben.

Smart Mobility

Smart Mobility und Smart City Lösungen – zum Beispiel Carsharing, Flottenmanagement oder Mikromobilität.

Electrified

Professionelle eMobility-Umrüstungen und Electric Vehicle Communication für Ladesäulen.

Was wir machen

Leistungsspektrum im Überblick

VERBOT VON DIESEL-BUSSEN

"Nahverkehr käme zum Erliegen"

VON HANS RIEBSAMEN - AKTUALISIERT AM 18.02,2018 - 20:36

FAZ

Stadt fordert mehr Zeit zum Umrüsten

Diesel-Fahrverbot in Frankfurt trifft zwei Drittel aller Linienbusse

Aktualisiert am 19.09.18 um 16:55 Uhr

Fall 2: Klage der EU-Kommission

Neben der DUH moniert auch die EU-Kommission seit Jahren, dass die Grenzwerte für Stickoxide in vielen deutschen Städten nicht eingehalten werden. Mehrfach hatte die EU die bisherigen Anstrengungen Deutschlands als nicht ausreichend kritisiert.

Neue Herausforderungen

Fahrverbote

e-troFit Bus

Umrüstung von Diesel-Bussen auf Elektroantrieb

Das Konzept

Streckenanalyse

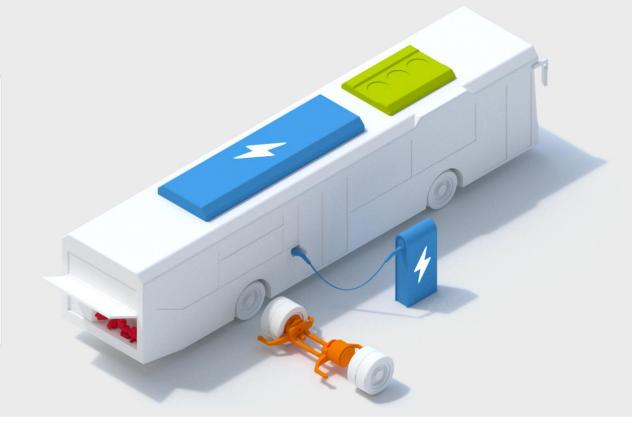
- → Verkehr, Wetter
- → Länge der zurückgelegten Strecken
- **→** Topologie
- → Umlaufplanung

✓ Worst-Case Betrachtung zur Bestimmung der notwendigen Batteriekapazität

Konzept Batterie

Elektromotor

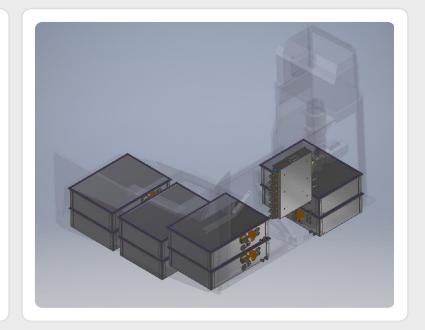
Steuergerät


Klimaanlage

Ladevorrichtung

Batterie

e-troFit Bus


Welche Umbauten sind nötig?

Nutzung des Motorraums für den Energiespeicher:

- ✓ Bis zu 320 kWh können in den ehemaligen Motorraum integriert werden.
- ✓ Weitere Batteriepakete können auf dem Dach installiert werden.
- → Schwerpunktlage beachten wegen Kipptest

Bei Nachrüstungen sind gelten die gesetzlichen Bestimmungen des Erstzulassungsjahres des Fahrzeugs

Konzept Batterie

Nutzung des Motorraums für den Energiespeicher:

- ✓ Bis zu 320 kWh können in den ehemaligen Motorraum integriert werden.
- ✓ Weitere Batteriepakete können auf dem Dach installiert werden.
- Schwerpunktlage beachten wegen Kipptest


Bei Nachrüstungen sind gelten die gesetzlichen Bestimmungen des Erstzulassungsjahres des Fahrzeugs

Konzept Batterie

Fahrmotor	
Systemleistung (Peak / 30 Min. / Dauer)	250 / 174 / 120 kW ¹⁾
Drehzahl Elektromotor (Peak)	11.000 U/min
Technologie Elektromotor	2 x Asynchronmotor
Übersetzungsstufe (integriert)	1-Gang; i = 22,66 ²⁾
Abtriebsmoment (Peak)	22.000 Nm ³⁾
Wechselrichter	
Nennspannung DC	650 V
Strom DC (Peak / Dauer)	350 / 250 A _{rms}
	11113
System	11113
System Fahrzeuggesamtgewicht (max.)	29 t ⁴⁾
·	
Fahrzeuggesamtgewicht (max.)	29 t ⁴⁾

- ¹⁾ Applikations-Beispiele siehe Notizentext
- ²⁾ Weitere Übersetzung i = 17,80
- ³⁾ Für Achssystem mit beiden E-Motoren, mit Achsübersetzung i = 22,66
- ⁴⁾ Zulässige Achslast = 13 t
- 5) Systemgewicht:

Achse + 2 Elektromotoren einschl. Planetenstufe + 2 Wechselrichter + EST 54

Elektrische Portalachse AVE 130

Technische Angaben

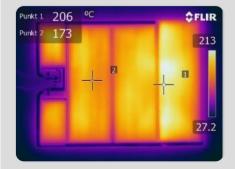
Einflussfaktoren und Lösungen

- → Korrekte Ermittlung des Bedarfs
- → Heizung als Teil der Betriebsstrategie

Lösungen

- ✓ Hybrid-Zuheizer (Elektrisch und Diesel/Heizöl)

 7kW + 7kW / 18 kW
- **✓** Wärmepumpe



Ausblick

✓ Oberflächenheizung oder "Surface-Heating"

Klimatisierungskonzept

Kühlen

→ Ausnutzung der Effizienzvorteile eines drehzahlgeregelten Kompressors in der Wärmepumpe

Lösungen

- ✓ Starke Belüftung des Fahrgastraumes (+ Fahrerarbeitsplatz Klimaanlage)
- ✓ Regelbare Fahrgastraumklimaanlage mit reduzierbarerem Leistungsmodus
- ✓ Untersuchung von z.B. Luftvorhängen an Türen
- ✓ Neue Regelungsansätze → Komfortempfinden

Konzept Kühlen

Physikalische Grundprinzipien:

- → Konduktives Laden
- → Induktives Laden → nicht serienreif mit hohen Leistungen möglich

Varianten der konduktiven Stromübertragung

- ✓ Stecker
 - → AC-Ladung (max. 22 kW, 3-phasig)
 - → DC-Ladung (bis 350 kW)
- **✓** Pantograph
 - → Infrastrukturseitig
 - → Fahrzeugseitig
 - → Gleichstromladung mit mind. 50 kW (CCS)

Konzept Laden

Herausforderungen:

- → Funktionale Sicherheit
- → ISO26262 nimmt zukünftig Fahrzeuge über 3,5 t nicht mehr aus

